1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975
//! This defines data types related to [`Encryptor`] and [`Decryptor`].
use rand::{CryptoRng, RngCore};
use serde::{Deserialize, Serialize};
use std::convert::TryFrom;
use tracing::{error, instrument};
use utilities::crypto::error::CryptoError;
use zeroize::ZeroizeOnDrop;
use crate::crypto::{generic::ParseBytes, CryptorKey};
use chacha20poly1305::{
aead::{Aead, Payload},
AeadCore, ChaCha20Poly1305, KeyInit,
};
use crate::infrastructure::sensitive_info::SensitiveInfoConfig;
/// The [`Encryptor`] type.
/// It contains `data` to be encrypted, plus `context` and `config` fields.
#[derive(Clone, Eq, ZeroizeOnDrop)]
pub struct Encryptor {
/// The actual bytes of data to be encrypted.
data: Vec<u8>,
/// Additional context about the data.
#[zeroize(skip)]
context: CryptorContext,
/// Configuration
config: SensitiveInfoConfig,
}
/// An implementation of the `std::fmt::Display` trait for [`Encryptor`]
impl std::fmt::Display for Encryptor {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
if cfg!(debug_assertions) && !self.config.is_redacted() {
// this is a Debug build *AND* redacted flag is FALSE
let data_hex = self
.data
.iter()
.map(|b| format!("{:02x}", b))
.collect::<Vec<String>>()
.join(" ");
write!(
f,
"\n---Encryptor begin---\n\n\
\
\tdata: 0x[{data}]\n\
\tdata length: {data_len}\n\
{context}\n\
\
\n---Encryptor end---\n",
data = data_hex,
data_len = self.data.len(),
context = self.context,
)
} else {
// this is a Release build *OR* redacted flag is TRUE
write!(
f,
"\n---Encryptor begin---\n\n\
\t{redacted}\n\
\n---Encryptor end---\n",
redacted = self.config.clone().redacted_label(),
)
}
}
}
/// An implementation of the `std::fmt::Debug` trait for [`Encryptor`]
impl std::fmt::Debug for Encryptor {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
if cfg!(debug_assertions) && !self.config.is_redacted() {
// this is a Debug build *AND* redacted flag is FALSE
f.debug_struct("Encryptor")
.field("data", &self.data)
.field("context", &self.context)
.finish()
} else {
// this is a Release build *OR* redacted flag is TRUE
write!(f, "Encryptor {}", self.config.clone().redacted_label())
}
}
}
/// Implementation of the `TryFrom` trait for converting to `Vec<u8>`
impl TryFrom<Encryptor> for Vec<u8> {
type Error = CryptoError;
fn try_from(encryptor: Encryptor) -> Result<Self, Self::Error> {
// Output byte array format:
// data len (2 bytes) || data || context len (2 bytes) ||
// context data || config len (2 bytes) || config data
let context: Vec<u8> = encryptor.context.to_owned().into();
let config: Vec<u8> = encryptor.config.to_owned().try_into()?;
let data_length =
u16::try_from(encryptor.data.len()).map_err(|_| CryptoError::CannotEncodeDataLength)?;
let context_length =
u16::try_from(context.len()).map_err(|_| CryptoError::CannotEncodeDataLength)?;
let config_length =
u16::try_from(config.len()).map_err(|_| CryptoError::CannotEncodeDataLength)?;
let bytes = data_length
.to_be_bytes()
.into_iter()
.chain(encryptor.data.to_owned())
.chain(context_length.to_be_bytes())
.chain(context)
.chain(config_length.to_be_bytes())
.chain(config)
.collect();
Ok(bytes)
}
}
/// Implementation of the `TryFrom` trait for converting from `Vec<u8>` to
/// [`Encryptor`]
impl TryFrom<Vec<u8>> for Encryptor {
type Error = CryptoError;
#[instrument(skip_all, err(Debug))]
fn try_from(bytes: Vec<u8>) -> Result<Self, Self::Error> {
// Input byte array format:
// data len (2 bytes) || data || context len (2 bytes) ||
// context data || config len (2 bytes) || config data
// we'll be parsing the byte array, and creating an instance of Encryptor type
let mut parse = ParseBytes::new(bytes);
let data_length = parse.take_bytes_as_u16()?;
// data_length is being converted from u16 to usize.
// This conversion is always valid, guaranteed to never truncate data,
// because a usize is always at least as large as a u16.
let data = parse.take_bytes(data_length as usize)?.to_vec();
let context_length = parse.take_bytes_as_u16()?;
let context: Vec<u8> = parse.take_bytes(context_length as usize)?.to_vec();
let config_length = parse.take_bytes_as_u16()?;
let config: Vec<u8> = parse.take_rest()?.to_vec();
// make sure that the length of the context matches the parsed length
if context.len() != context_length as usize {
return Err(CryptoError::ConversionError);
}
// make sure that the length of the config matches the parsed length
if config.len() != config_length as usize {
return Err(CryptoError::ConversionError);
}
Ok(Self {
data,
context: context.into(),
config: config.try_into()?,
})
}
}
/// Implement the `PartialEq` trait for the [`Encryptor`] type.
impl PartialEq for Encryptor {
/// Determines if two [`Encryptor`] instances are equal.
///
/// This function compares the `data` and `context` fields of two
/// [`Encryptor`] instances. It does not compare the `config` fields
/// because the `config` field does not affect the functional equivalence of
/// two [`Encryptor`] instances.
///
/// # Arguments
///
/// * `other` - The other [`Encryptor`] instance to compare with.
///
/// # Returns
///
/// Returns `true` if the `data` and `context` fields are equal between the
/// two [`Encryptor`] instances, Otherwise returns `false`.
fn eq(&self, other: &Self) -> bool {
// Don't compare the config fields
self.data == other.data && self.context == other.context
}
}
impl Encryptor {
/// Constructs a new instance of [`Encryptor`] type.
///
/// # Arguments
///
/// * `data` - A vector of bytes representing the data to be managed by the
/// instance.
///
/// * `context` - An instance of [`CryptorContext`] that provides necessary
/// cryptographic context
/// for operations that may be performed on `data`.
///
/// * `config` - A [`SensitiveInfoConfig`] instance that provides
/// configuration details for
/// managing sensitive information.
///
/// # Returns
///
/// * Returns a new instance of [`Encryptor`] type, initialized with the
/// provided `data`, `context`, and `config`.
///
/// # Example
///
/// ```ignore
/// let data = vec![1, 2, 3, 4, 5];
/// let context = CryptorContext::new(...);
/// let config = SensitiveInfoConfig::new(true);
///
/// let encryptor = Encryptor::new(data, context, config);
/// ```
pub fn new(data: Vec<u8>, context: CryptorContext, config: SensitiveInfoConfig) -> Self {
Self {
data,
context,
config,
}
}
/// Returns a reference to the encrypted data bytes stored within the
/// [`Encryptor`] instance.
///
/// This method provides read-only access to the internal `data` field,
/// ensuring that the encrypted data cannot be modified directly by the
/// caller.
///
/// # Examples
///
/// ```ignore
/// // Assuming you've set up an `Encryptor` instance named `encryptor`
/// let data_bytes: &[u8] = encryptor.data();
/// ```
///
/// # Returns
///
/// A byte slice (`&[u8]`) that represents the encrypted data.
/// Returns a reference to the data bytes.
pub fn data(&self) -> &[u8] {
&self.data
}
/// Encrypts data using the provided encryption key.
///
/// # Arguments
///
/// * `rng` - A mutable reference to the random number generator.
/// * `encryption_key` - The key used to encrypt data.
///
/// # Returns
///
/// * A new instance of the [`Encryptor`]
/// * Returns an error of type [`CryptoError`] if the encryption process
/// fails.
pub fn encrypt(
self,
rng: &mut (impl CryptoRng + RngCore),
encryption_key: &CryptorKey,
) -> Result<Decryptor, CryptoError> {
// setup cipher... create a new instance of ChaCha20Poly1305 with key
let cipher = ChaCha20Poly1305::new(&encryption_key.key_material);
// Format plaintext and associated data
let payload = Payload {
msg: &self.data,
aad: self.context.as_ref(),
};
// Generate nonce and encrypt the payload
let nonce = ChaCha20Poly1305::generate_nonce(rng);
let encrypted_data = cipher.encrypt(&nonce, payload).map_err(|e| {
error!("Encryption failed unexpectedly. {:?}", e);
CryptoError::EncryptionFailed
})?;
Ok(Decryptor::new(
encrypted_data,
self.context.clone(),
nonce,
SensitiveInfoConfig::new(true),
))
}
}
/// The context (a.k.a. associated data).
///
/// TODO: We should consider making this a trait and require the calling
/// application to define appropriate context for each of their encrypted types.
/// See issue key-mgmt#542
#[derive(Debug, Clone, Serialize, Deserialize, PartialEq, Eq, Hash)]
pub struct CryptorContext {
key_server_name: Vec<u8>,
}
/// An implementation of the `std::fmt::Display` trait for [`CryptorContext`].
impl std::fmt::Display for CryptorContext {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
let key_server_name_hex = self
.key_server_name
.iter()
.map(|b| format!("{:02x}", b))
.collect::<Vec<String>>()
.join(" ");
write!(
f,
"\n\nContext:\n\
\tkey server name: 0x[{key_server_name}]\n\
\tkey server name length: {key_server_name_len}\n",
key_server_name = key_server_name_hex,
key_server_name_len = self.key_server_name.len(),
)
}
}
/// Implement the `AsRef<[u8]>` trait for [`CryptorContext`].
impl AsRef<[u8]> for CryptorContext {
fn as_ref(&self) -> &[u8] {
&self.key_server_name
}
}
impl CryptorContext {
/// Constructs an instance of [`CryptorContext`].
/// A type parameter is bounded by the `AsRef<[u8]>` trait.
///
/// This trait is implemented by types that can be referenced as a byte
/// slice, e.g. `&str`, `Vec<u8>`
///
/// Example usage:
///
/// From string slices...
/// ```ignore
/// let context = CryptorContext::new("my_key_server");
/// ```
///
/// From `Vec<u8>`...
/// ```ignore
/// let key_server_name = "my_key_server".as_bytes().to_vec();
/// let context = CryptorContext::new(key_server_name);
/// ```
pub fn new<T: AsRef<[u8]>>(key_server_name: T) -> Self {
CryptorContext {
// use as_ref method to get a byte slice from the parameter,
// then convert the byte slice to a Vec<u8> with the to_vec method
key_server_name: key_server_name.as_ref().to_vec(),
}
}
}
/// Conversion from `Vec<u8>` to [`CryptorContext`]
impl From<Vec<u8>> for CryptorContext {
fn from(data_bytes: Vec<u8>) -> Self {
// Create a new CryptorContext using the byte data
CryptorContext {
key_server_name: data_bytes,
}
}
}
/// Conversion to `Vec<u8>`
impl From<CryptorContext> for Vec<u8> {
fn from(context: CryptorContext) -> Self {
context.key_server_name
}
}
/// The [`Decryptor`] type represents a ciphertext encrypted under the
/// [ChaCha20Poly1305 scheme](https://www.rfc-editor.org/rfc/rfc8439) for
/// authenticated encryption with associated data (AEAD).
///
/// As implied by the scheme name, this uses the recommended 20 rounds and a
/// standard 96-bit nonce. For more details, see the
/// [ChaCha20Poly1305 crate](https://docs.rs/chacha20poly1305/latest/chacha20poly1305/index.html).
#[derive(Clone, Eq)]
pub struct Decryptor {
ciphertext: Vec<u8>,
context: CryptorContext,
nonce: chacha20poly1305::Nonce,
config: SensitiveInfoConfig,
}
/// An implementation of the `std::fmt::Display` trait for `Decryptor`
impl std::fmt::Display for Decryptor {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
let ciphertext_hex = self
.ciphertext
.iter()
.map(|b| format!("{:02x}", b))
.collect::<Vec<String>>()
.join(" ");
if cfg!(debug_assertions) && !self.config.is_redacted() {
// this is a Debug build *AND* redacted flag is FALSE
write!(
f,
"\n---Encrypted data begin---\n\n\
\
\tciphertext: 0x[{ciphertext}]\n\
\tciphertext length: {ciphertext_len}\n\
\tcontext: {context}\n\
\tnonce: {nonce:02x?}\n\
\tnonce length: {nonce_len}\n
\
\n---Encrypted data end---\n",
ciphertext = ciphertext_hex,
ciphertext_len = self.ciphertext.len(),
context = self.context,
nonce = self.nonce,
nonce_len = self.nonce.len(),
)
} else {
// this is a Release build *OR* redacted flag is TRUE
write!(
f,
"\n---Encrypted data begin---\n\n\
\t{redacted}\n\
\n---Encrypted data end---\n",
redacted = self.config.clone().redacted_label(),
)
}
}
}
/// An implementation of the `std::fmt::Debug` trait for [`Decryptor`]
impl std::fmt::Debug for Decryptor {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
if cfg!(debug_assertions) && !self.config.is_redacted() {
// this is a Debug build *AND* redacted flag is FALSE
f.debug_struct("Decryptor")
.field("ciphertext", &self.ciphertext)
.field("nonce", &self.nonce)
.field("context", &self.context)
.finish()
} else {
// this is a Release build *OR* redacted flag is TRUE
write!(f, "Decryptor {}", self.config.clone().redacted_label())
}
}
}
/// Implementation of the `TryFrom` trait for converting from [`Decryptor`] to
/// `Vec<u8>`
impl TryFrom<Decryptor> for Vec<u8> {
type Error = CryptoError;
fn try_from(decryptor: Decryptor) -> Result<Self, Self::Error> {
// Output byte array format:
// ciphertext len (2 bytes) || ciphertext || context len (2 bytes) ||
// context data || nonce len (2 bytes) || nonce data || config len (2 bytes) ||
// config data
// de-structure the Decryptor struct to get direct access to its fields
let Decryptor {
ciphertext,
nonce,
config,
context,
} = decryptor;
// convert each field to bytes as needed
let context_bytes: Vec<u8> = context.into();
let config_bytes: Vec<u8> = config.try_into()?;
// convert lengths to u16...
let ciphertext_length =
u16::try_from(ciphertext.len()).map_err(|_| CryptoError::CannotEncodeDataLength)?;
let context_length =
u16::try_from(context_bytes.len()).map_err(|_| CryptoError::CannotEncodeDataLength)?;
let config_length =
u16::try_from(config_bytes.len()).map_err(|_| CryptoError::CannotEncodeDataLength)?;
let nonce_length =
u16::try_from(nonce.len()).map_err(|_| CryptoError::CannotEncodeDataLength)?;
// construct the output byte array...
// convert lengths from u16 to big-endian bytes
let bytes = ciphertext_length
.to_be_bytes()
.into_iter()
.chain(ciphertext)
.chain(context_length.to_be_bytes())
.chain(context_bytes)
.chain(nonce_length.to_be_bytes())
.chain(nonce)
.chain(config_length.to_be_bytes())
.chain(config_bytes)
.collect();
Ok(bytes)
}
}
/// Implementation of the `TryFrom` trait for converting from `Vec<u8>` to
/// [`Decryptor`]
impl TryFrom<Vec<u8>> for Decryptor {
type Error = CryptoError;
#[instrument(skip_all, err(Debug))]
fn try_from(bytes: Vec<u8>) -> Result<Self, Self::Error> {
// Input byte array format:
// ciphertext len (2 bytes) || ciphertext || context len (2 bytes) ||
// context data || nonce len (2 bytes) || nonce data || config len (2 bytes) ||
// config data
// we'll be parsing the byte array, and creating an instance of Decryptor type
let mut parse = ParseBytes::new(bytes);
let ciphertext_length = parse.take_bytes_as_u16()?;
// data_length is being converted from u16 to usize.
// This conversion is always valid, guaranteed to never truncate data,
// because a usize is always at least as large as a u16.
let ciphertext = parse.take_bytes(ciphertext_length as usize)?.to_vec();
let context_length = parse.take_bytes_as_u16()?;
let context: Vec<u8> = parse.take_bytes(context_length as usize)?.to_vec();
let nonce_length = parse.take_bytes_as_u16()?;
// ChaCha20Poly1305 nonces should always be exactly 12 bytes
let nonce: [u8; 12] = parse
.take_bytes(nonce_length as usize)?
.try_into()
.map_err(|_| CryptoError::ConversionError)?;
let config_length = parse.take_bytes_as_u16()?;
let config: Vec<u8> = parse.take_rest()?.to_vec();
// make sure that the length of the config matches the parsed length
if config.len() != config_length as usize {
return Err(CryptoError::ConversionError);
}
Ok(Self {
ciphertext,
context: context.into(),
nonce: nonce.into(),
config: config.try_into()?,
})
}
}
/// Implement the `PartialEq` trait for the [`Decryptor`] type.
impl PartialEq for Decryptor {
/// Determines if two [`Decryptor`] instances are equal.
///
/// This function compares the fields of two [`Decryptor`] instances,
/// excluding the `config` field because the `config` field does not
/// affect the functional equivalence of two [`Decryptor`] instances.
///
/// # Arguments
///
/// * `other` - The other [`Decryptor`] instance to compare with.
///
/// # Returns
///
/// Returns `true` if the non-`config` fields are equal between the two
/// [`Decryptor`] instances, Otherwise returns `false`.
fn eq(&self, other: &Self) -> bool {
// Don't compare the config fields
self.ciphertext == other.ciphertext
&& self.context == other.context
&& self.nonce == other.nonce
}
}
impl Decryptor {
/// Constructs a new instance of the [`Decryptor`] type.
///
/// # Arguments
///
/// * `ciphertext` - A vector of bytes representing the ciphertext. This is
/// typically the result of the encrypt operation.
///
/// * `context` - An instance of [`CryptorContext`]
///
/// * `nonce` - A `chacha20poly1305::Nonce` instance. This is used in the
/// encryption process to ensure the security of the ciphertext. Every
/// time data is encrypted, a unique nonce should be generated.
///
/// # Returns
///
/// Returns a new instance of the [`Decryptor`] type, initialized with the
/// provided `ciphertext`, `context`, `nonce`, and `config`.
fn new(
ciphertext: Vec<u8>,
context: CryptorContext,
nonce: chacha20poly1305::Nonce,
config: SensitiveInfoConfig,
) -> Self {
Self {
ciphertext,
context,
nonce,
config,
}
}
/// Decrypts data using the provided key.
///
/// # Arguments
///
/// * `decryption_key` - The key used to decrypt the data.
///
/// # Returns
///
/// * A newly created [`Encryptor`] instance containing the decrypted data.
/// * Returns an error of type [`CryptoError`] if the decryption process
/// fails.
pub fn decrypt(self, decryption_key: &CryptorKey) -> Result<Encryptor, CryptoError> {
// setup cipher... create a new instance of ChaCha20Poly1305 with key
let cipher = ChaCha20Poly1305::new(&decryption_key.key_material);
// Format ciphertext and associated data
let payload = Payload {
msg: &self.ciphertext,
aad: self.context.as_ref(),
};
// Decrypt
let plaintext_data = cipher
.decrypt(&self.nonce, payload)
.map_err(|_| CryptoError::DecryptionFailed)?;
// Return the decrypted data
Ok(Encryptor::new(
plaintext_data,
self.context,
SensitiveInfoConfig::new(true),
))
}
}
/// Tests...
#[cfg(test)]
mod test {
use super::*;
use crate::infrastructure::sensitive_info::sensitive_info_check;
const KEY_SERVER_NAME: &str = "test_key_server_1";
const DATA_BYTES_LENGTH: usize = 257;
/// Test the correctness of the sensitive information handling.
#[test]
fn cryptor_key_sensitive_info_handling_on_debug_and_display() {
// generate some random data
let data_plaintext = generate_random_data(DATA_BYTES_LENGTH);
// create an Encryptor instance
let mut encryptor = Encryptor::new(
data_plaintext.to_vec(),
CryptorContext::new(KEY_SERVER_NAME),
SensitiveInfoConfig::new(true),
);
println!(
"\nEncryptor with redacted config:\n{encryptor}",
encryptor = encryptor
);
// sensitive information is currently redacted, let's test that
sensitive_info_check(&encryptor, &encryptor.config).unwrap();
// unredact sensitive information, and test
encryptor.config.unredact();
println!(
"\nEncryptor with un-redacted config:\n{encryptor}",
encryptor = encryptor
);
sensitive_info_check(&encryptor, &encryptor.config).unwrap();
}
/// Converts an encryptor between [`Encryptor`] and `Vec<u8>`
/// representations and verifies the conversion.
///
/// # Errors
///
/// Returns a [`CryptoError`] if there is an error during encryption or
/// conversion.
#[test]
fn encryptor_vec_u8_conversion() -> Result<(), CryptoError> {
// generate some random data
let data_plaintext = generate_random_data(DATA_BYTES_LENGTH);
// create an Encryptor instance
let encryptor = Encryptor::new(
data_plaintext.to_vec(),
CryptorContext::new(KEY_SERVER_NAME),
SensitiveInfoConfig::new(false),
);
// convert Encryptor to Vec<u8> by cloning
let encryptor_vec: Vec<u8> = encryptor.clone().try_into()?;
// convert Vec<u8> back to Encryptor
let encryptor_from_vec: Encryptor = encryptor_vec.try_into()?;
println!(
"\nOriginal raw plaintext data: 0x{data:02x?}",
data = data_plaintext
);
println!(
"Original raw plaintext data length: {data_len}",
data_len = data_plaintext.len()
);
println!("\nOriginal encryptor: {encryptor}", encryptor = encryptor);
println!(
"\nConverted encryptor: {encryptor}",
encryptor = encryptor_from_vec
);
// compare the original and converted encryptor
assert_eq!(encryptor, encryptor_from_vec);
Ok(())
}
/// Sets up a [`Decryptor`] instance for testing.
///
/// # Returns
///
/// Returns a `Result` containing the [`Decryptor`] instance if successful,
/// or a [`CryptoError`] if any step in the setup fails.
fn setup_decryptor() -> Result<Decryptor, CryptoError> {
let mut rng = rand::thread_rng();
// Generate some random data
let data_plaintext = generate_random_data(DATA_BYTES_LENGTH);
// Create an Encryptor instance
let encryptor = Encryptor::new(
data_plaintext.to_vec(),
CryptorContext::new(KEY_SERVER_NAME),
SensitiveInfoConfig::new(true),
);
// Generate an encryption key
let data_encryption_key = CryptorKey::new(&mut rng);
// Encrypt the data
let mut decryptor = encryptor.encrypt(&mut rng, &data_encryption_key)?;
// Unredact the decryptor, so we can display all of the sensitive info for
// debugging/visual inspection
decryptor.config.unredact();
Ok(decryptor)
}
/// Converts a decryptor from `Vec<u8>` to [`Decryptor`].
/// Removes some bytes to make the conversion fail.
///
/// # Errors
///
/// Returns a [`CryptoError`] if there is an error
#[test]
fn decryptor_from_bytes_requires_all_fields() -> Result<(), CryptoError> {
let decryptor = setup_decryptor()?;
let mut decryptor_vec: Vec<u8> = decryptor.try_into()?;
// Remove some bytes to simulate incomplete fields
decryptor_vec.truncate(decryptor_vec.len() - 10);
// This should fail
assert!(Decryptor::try_from(decryptor_vec).is_err());
Ok(())
}
/// Converts a decryptor from `Vec<u8>` to [`Decryptor`].
/// Adds extra bytes at the end of the byte array to make the conversion
/// fail.
///
/// # Errors
///
/// Returns a [`CryptoError`] if there is an error
#[test]
fn decryptor_from_bytes_cannot_have_extra_bytes() -> Result<(), CryptoError> {
let decryptor = setup_decryptor()?;
let mut decryptor_vec: Vec<u8> = decryptor.try_into()?;
// Append extra bytes
decryptor_vec.extend_from_slice(&[0xBB, 0xAA, 0xAA, 0xDD]);
// This should fail
assert!(Decryptor::try_from(decryptor_vec).is_err());
Ok(())
}
/// Converts a decryptor between [`Decryptor`] and `Vec<u8>`
/// representations and verifies the conversion.
///
/// # Errors
///
/// Returns a [`CryptoError`] if there is an error during encryption or
/// conversion.
#[test]
fn decryptor_vec_u8_conversion_works() -> Result<(), CryptoError> {
let decryptor = setup_decryptor()?;
// convert decryptor to Vec<u8> by cloning
let decryptor_vec: Vec<u8> = decryptor.clone().try_into()?;
// convert Vec<u8> back to decryptor
let decryptor_from_vec: Decryptor = decryptor_vec.try_into()?;
println!("\nOriginal decryptor: {decryptor}", decryptor = decryptor);
println!(
"\nConverted encryptor: {decryptor}",
decryptor = decryptor_from_vec
);
// compare the original and converted decryptor
assert_eq!(decryptor, decryptor_from_vec);
Ok(())
}
/// Encrypts and decrypts data, verifying the consistency of the
/// encryption process.
///
/// # Errors
///
/// * Returns a [`CryptoError`] if there is an error during encryption,
/// decryption, or verification.
#[test]
fn data_encrypt_decrypt() -> Result<(), CryptoError> {
let mut rng = rand::thread_rng();
// generate some random data
let data = generate_random_data(DATA_BYTES_LENGTH);
// generate an encryption key
let data_encryption_key = CryptorKey::new(&mut rng);
// create an Encryptor instance
let plaintext_data = Encryptor::new(
data.to_vec(),
CryptorContext::new(KEY_SERVER_NAME),
SensitiveInfoConfig::new(true),
);
// clone, so we can use it later
let original_data = plaintext_data.clone();
// encrypt the data
let mut encrypted_data = plaintext_data.encrypt(&mut rng, &data_encryption_key)?;
// unredact data for display
encrypted_data.config.unredact();
println!(
"\nKey server name:\n{} (hex encoded: {})",
KEY_SERVER_NAME,
hex::encode(KEY_SERVER_NAME)
);
println!(
"\nPlaintext data:{data:02x?}\
\nPlaintext data length: {data_len}\
\n\nEncrypted data:\n{encrypted_data}",
data = data,
data_len = data.len(),
encrypted_data = encrypted_data,
);
// decrypt the encrypted data
let mut decrypted_data = encrypted_data.decrypt(&data_encryption_key)?;
// unredact data for display
decrypted_data.config.unredact();
println!(
"\nPlaintext data: {data:02x?}\
\nPlaintext data length: {data_len}\
\n\nDecrypted data:\n{decrypted_data}",
data = data,
data_len = data.len(),
decrypted_data = decrypted_data,
);
// make sure the decrypted data matches the original data
assert_eq!(original_data, decrypted_data);
Ok(())
}
/// Encrypts and decrypts data, verifying the consistency of the
/// context data.
///
/// # Errors
///
/// * Returns a [`CryptoError`] if there is an error during encryption,
/// decryption, or verification.
#[test]
fn data_context_fails() -> Result<(), CryptoError> {
let mut rng = rand::thread_rng();
// generate some random data
let data = generate_random_data(DATA_BYTES_LENGTH);
// create a new data encryption key
let data_encryption_key = CryptorKey::new(&mut rng);
// create a new instance of Encryptor
let plaintext_data = Encryptor::new(
data.to_vec(),
CryptorContext::new(KEY_SERVER_NAME),
SensitiveInfoConfig::new(true),
);
// encrypt the data
let mut encrypted_data = plaintext_data.encrypt(&mut rng, &data_encryption_key)?;
// unredact for display
encrypted_data.config.unredact();
println!(
"\nEncrypted data:{encrypted_data}",
encrypted_data = encrypted_data
);
// modify the context aka associated data
encrypted_data
.context
.key_server_name
.extend_from_slice("__baaaaaad__".as_bytes());
println!(
"\nCorrupt encrypted data :{encrypted_data}",
encrypted_data = encrypted_data
);
// try to decrypt the data with corrupt context
let decrypted_data = encrypted_data.decrypt(&data_encryption_key);
// make sure we generated the expected error
assert_eq!(
decrypted_data.unwrap_err().to_string(),
CryptoError::DecryptionFailed.to_string()
);
Ok(())
}
/// Generates some random data to be used by the unit test functions.
///
/// # Arguments
///
/// * `num_bytes` - The number of random bytes to be generated.
///
/// # Returns
///
/// * A vector of bytes holding the random data requested by the caller.
fn generate_random_data(num_bytes: usize) -> Vec<u8> {
let mut rng = rand::rngs::OsRng;
let mut random_data = vec![0; num_bytes];
rng.fill_bytes(&mut random_data);
random_data
}
}