1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
//! This defines [`CryptorKey`] type, which is an encryption key that can be
//! used to securely encrypt/decrypt data.
use chacha20poly1305::{ChaCha20Poly1305, KeyInit};
use rand::{CryptoRng, RngCore};
use std::path::Path;
use utilities::crypto::error::CryptoError;
use zeroize::{Zeroize, ZeroizeOnDrop};
use crate::infrastructure::sensitive_info::SensitiveInfoConfig;
/// The [`CryptorKey`] type is a default-length symmetric encryption key
/// for an AEAD scheme. It can be used to securely encrypt data.
#[derive(Clone, Eq, Zeroize, ZeroizeOnDrop)]
pub struct CryptorKey {
pub(super) key_material: Box<chacha20poly1305::Key>,
config: SensitiveInfoConfig,
}
/// An implementation of the `std::fmt::Display` trait for [`CryptorKey`]
impl std::fmt::Display for CryptorKey {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
if cfg!(debug_assertions) && !self.config.is_redacted() {
// this is a Debug build *AND* redacted flag is FALSE
write!(
f,
"\n---Cryptor key begin---\n\n\
\
\tKey: 0x{key:02x?}\n\
\tKey length: {key_len}\n\
\
\n---Cryptor key end---\n",
key = self.key_material,
key_len = self.key_material.len(),
)
} else {
// this is a Release build *OR* redacted flag is TRUE
write!(
f,
"\n---Cryptor key begin---\n\n\
\t{redacted}\n\
\n---Cryptor key end---\n",
redacted = self.config.clone().redacted_label(),
)
}
}
}
/// An implementation of the `std::fmt::Debug` trait for [`CryptorKey`]
impl std::fmt::Debug for CryptorKey {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
if cfg!(debug_assertions) && !self.config.is_redacted() {
// this is a Debug build *AND* redacted flag is FALSE
f.debug_struct("CryptorKey")
.field("key_material", &self.key_material)
.finish()
} else {
// this is a Release build *OR* redacted flag is TRUE
write!(f, "CryptorKey {}", self.config.clone().redacted_label())
}
}
}
/// Implement the `PartialEq` trait for the [`CryptorKey`] type.
impl PartialEq for CryptorKey {
/// Determines if two [`CryptorKey`] instances are equal.
///
/// This function compares the `key_material` fields of two [`CryptorKey`]
/// instances. It does not compare the `config` fields because the
/// `config` field does not affect the functional equivalence of two
/// [`CryptorKey`] instances.
///
/// # Arguments
///
/// * `other` - The other [`CryptorKey`] instance to compare with.
///
/// # Returns
///
/// Returns `true` if the `data` and `context` fields are equal between the
/// two [`CryptorKey`] instances, Otherwise returns `false`.
fn eq(&self, other: &Self) -> bool {
// Don't compare the config fields
self.key_material == other.key_material
}
}
/// Implementation for [`CryptorKey`]
impl CryptorKey {
/// Length of the encryption key in `bytes`
const CRYPTOR_KEY_LENGTH: usize = 32;
/// Constructs a new instance of the [`CryptorKey`] type.
///
/// # Arguments
///
/// * `rng` - A mutable reference to an object implementing both the
/// `CryptoRng` and `RngCore` traits. This is used to generate the
/// cryptographic key for the ChaCha20Poly1305 algorithm.
///
/// # Returns
///
/// Returns a new instance of the [`CryptorKey`] type with a fresh
/// cryptographic key generated via the provided random number generator
/// (`rng`) and a new [`SensitiveInfoConfig`] object.
///
/// A [`CryptorKey`] is generated uniformly at random. It is a 32-byte pseudorandom key for use in the [ChaCha20Poly1305 scheme](https://www.rfc-editor.org/rfc/rfc8439) for
/// authenticated encryption with associated data (AEAD).
pub fn new(rng: &mut (impl CryptoRng + RngCore)) -> Self {
Self {
key_material: Box::new(ChaCha20Poly1305::generate_key(rng)),
config: SensitiveInfoConfig::new(true),
}
}
/// Returns the [`CryptorKey`] stored in a file.
pub fn from_file(path: impl AsRef<Path>) -> Result<Self, CryptoError> {
// read key from a file
let mut key_bytes = std::fs::read(&path)
.map_err(|e| CryptoError::FileIo(e, path.as_ref().to_path_buf()))?;
let cryptor_key = Self::from_bytes(&key_bytes);
key_bytes.zeroize();
cryptor_key
}
/// Returns the [`CryptorKey`] key based on key material in the caller's
/// byte array.
pub fn from_bytes(cryptor_key: &[u8]) -> Result<Self, CryptoError> {
if cryptor_key.len() != CryptorKey::CRYPTOR_KEY_LENGTH {
return Err(CryptoError::InvalidEncryptionKey);
}
// fixed size array initialized to zeros
let mut key_bytes = [0; CryptorKey::CRYPTOR_KEY_LENGTH];
// copy caller's key material
key_bytes.copy_from_slice(cryptor_key);
Ok(Self {
key_material: Box::new(key_bytes.into()),
config: SensitiveInfoConfig::new(true),
})
}
/// Converts [`CryptorKey`] to a byte array.
///
/// # Warning
///
/// This method gives direct access to the key material bytes.
/// The caller should be careful to manually zeroize them after use to
/// prevent unintended exposure of sensitive information. Consider using
/// the `zeroize` crate to securely zero the data.
///
/// # Example
///
/// ```rust
/// use zeroize::Zeroize;
/// use lock_keeper::crypto::CryptorKey;///
///
/// let mut rng = rand::thread_rng();
/// let encryption_key = CryptorKey::new(&mut rng);
/// let mut key_bytes = encryption_key.into_bytes();
///
/// // Use the key bytes...
///
/// // When done, zeroize the key bytes
/// key_bytes.zeroize();
/// ```
pub fn into_bytes(self) -> [u8; CryptorKey::CRYPTOR_KEY_LENGTH] {
(*self.key_material).into()
}
}
/// Tests...
#[cfg(test)]
pub(super) mod test {
use super::*;
use crate::infrastructure::sensitive_info::sensitive_info_check;
use anyhow::anyhow;
use std::{fs, fs::File, io::Write};
const CRYPTOR_KEY_FILENAME: &str = "temp_encryption_key.bin";
/// Test the correctness of the sensitive information handling.
#[test]
fn cryptor_key_sensitive_info_handling_on_debug_and_display() {
let mut rng = rand::thread_rng();
let mut encryption_key = CryptorKey::new(&mut rng);
// sensitive information should be redacted by default, let's test...
sensitive_info_check(&encryption_key, &encryption_key.config).unwrap();
// unredact sensitive information, and test
encryption_key.config.unredact();
sensitive_info_check(&encryption_key, &encryption_key.config).unwrap();
}
/// Test the conversion from bytes to struct
#[test]
fn cryptor_key_from_bytes() -> Result<(), CryptoError> {
let mut rng = rand::thread_rng();
let encryption_key = CryptorKey::new(&mut rng);
// use the cloned key bytes to create a new key
let encryption_key_bytes = encryption_key.key_material.clone();
let mut encryption_key_from_bytes = CryptorKey::from_bytes(&encryption_key_bytes)?;
// allow sensitive info to be shown
encryption_key_from_bytes.config.unredact();
println!(
"\nEncryption key: 0x{key:02x?}\n\
Key length: {key_len}\n\
\
\nConverted encryption key:\n{converted_key}\n",
key = encryption_key_bytes,
key_len = encryption_key_bytes.len(),
converted_key = encryption_key_from_bytes,
);
// compare the original key and the newly created key from the original key
// bytes
assert_eq!(encryption_key, encryption_key_from_bytes,);
Ok(())
}
/// Test the conversion from bytes to struct when the length is wrong.
#[test]
fn key_from_bytes_wrong_length_fails() -> Result<(), CryptoError> {
// test conversion with a key byte array that is TOO SHORT
let number_of_key_bytes = CryptorKey::CRYPTOR_KEY_LENGTH - 1;
let key_bytes = vec![0xab; number_of_key_bytes];
let new_encryption_key_from_bytes = CryptorKey::from_bytes(&key_bytes);
println!(
"\nConvert encryption key using {number_of_key_bytes} bytes:\n{new_encryption_key_from_bytes:x?}\n\n",
number_of_key_bytes=number_of_key_bytes,
new_encryption_key_from_bytes=new_encryption_key_from_bytes,
);
// make sure we have an invalid key error
assert_eq!(
new_encryption_key_from_bytes.unwrap_err().to_string(),
CryptoError::InvalidEncryptionKey.to_string()
);
// test conversion with a key byte array that is TOO LONG
let number_of_key_bytes = CryptorKey::CRYPTOR_KEY_LENGTH + 1;
let key_bytes = vec![0xab; number_of_key_bytes];
let new_encryption_key_from_bytes = CryptorKey::from_bytes(&key_bytes);
println!(
"\nConvert encryption key using {number_of_key_bytes} bytes:\n{new_encryption_key_from_bytes:02x?}\n\n",
number_of_key_bytes=number_of_key_bytes,
new_encryption_key_from_bytes=new_encryption_key_from_bytes,
);
// make sure we have an invalid key error
assert_eq!(
new_encryption_key_from_bytes.unwrap_err().to_string(),
CryptoError::InvalidEncryptionKey.to_string()
);
Ok(())
}
/// Test reading a key from a file.
#[test]
fn key_from_file() -> Result<(), CryptoError> {
// Use a helper function to write/read the key to/from a file.
// That way we can clean up the temp file in success and failure cases.
let result = key_from_file_helper();
// Always try to delete the file, even if key_from_file_helper()
// encountered an error.
match fs::remove_file(CRYPTOR_KEY_FILENAME) {
Ok(()) => (),
Err(e) => println!("Failed to remove a temp key file: {}", e),
}
// Now handle the result of key_from_file_helper()
match result {
Ok(()) => (),
Err(e) => panic!("Test failed: {}", e),
}
Ok(())
}
/// Helper function, so we can handle read from file failures correctly.
fn key_from_file_helper() -> Result<(), anyhow::Error> {
const KEY_FILENAME: &str = "temp_encryption_key.bin";
let mut rng = rand::thread_rng();
let encryption_key = CryptorKey::new(&mut rng);
// create a temp file to store the key
let mut encryption_key_file =
File::create(KEY_FILENAME).map_err(|_| anyhow!("Failed to create a temp key file."))?;
// clone it for later, before we lose ownership
let mut encryption_key_original = encryption_key.clone();
encryption_key_file
.write_all(&encryption_key.into_bytes())
.expect("Failed to write to a temp key file.");
// read the key from a file
let mut encryption_key_from_file = CryptorKey::from_file(KEY_FILENAME)?;
// allow sensitive info to be shown
encryption_key_from_file.config.unredact();
encryption_key_original.config.unredact();
println!("\nEncryption key:\n{key}", key = encryption_key_original);
println!(
"\nEncryption key from a file:\n{key_from_file}",
key_from_file = encryption_key_from_file
);
// make sure that key read from the file *is* the same as the original key
if encryption_key_original != encryption_key_from_file {
return Err(CryptoError::InvalidEncryptionKey.into());
}
Ok(())
}
}